
Abstract. A new optimization method for extremely
localized molecular orbitals (ELMO) is derived in a non-
orthogonal formalism. The method is based on a quasi
Newton-Raphson algorithm in which an approximate
diagonal-blocked Hessian matrix is calculated through
the Fock matrix. The Hessian matrix inverse is updated
at each iteration by a variable metric updating procedure
to account for the intrinsically small coupling between
the orbitals. The updated orbitals are obtained with
approximately n2 operations. No n3 processes such as
matrix diagonalization, matrix multiplication or orbital
orthogonalization are employed. The use of localized
orbitals allows for the creation of high-quality initial
``guess'' orbitals from optimized molecular orbitals of
small systems and thus reduces the number of iterations
to converge. The delocalization e�ects are included by a
Jacobi correction (JC) which allows the accurate calcu-
lation of the total energy with a limited number of
operations. This extension, referred to as ELMO(JC), is
a variational method that reproduces the Hartree-Fock
(HF) energy with an error of less than 2 kcal/mol for a
reduced total cost compared to standard HF methods.
The small number of variables, even for a very large
system, and the limited number of operations potentially
makes ELMO a method of choice to study large systems.
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1 Introduction

Performing Hartree-Fock (HF) calculations for large
systems is possible today using the direct-SCF tech-
niques [1] developed over the last 10 years. Several
attempts to reduce the computation time have been
designed by addressing both the Fock matrix computa-

tion and the orbital updating techniques. The integral
pre-screening method [2] of AlmloÈ f is one of the most
e�cient ways to discard small two-electron integrals
before calculating them, thus reducing the n4 dependen-
cy over the Gaussian basis set dimension [3, 4]. Other
techniques to reduce the Fock matrix calculation time
have been based on a classical approach to evaluate the
Coulomb operator in terms of multipolar expansion [5]
and derivation of new threshold criteria to further
reduce the computation of negligible two-electron inte-
grals for the exchange operator [6]. With the use of the
fast multipole methods [7] and complicated tree algo-
rithms [8], the Fock matrix computation time has been
reduced to a less than n2 scaling and allows one to
compute Fock matrices for large systems using several
thousand basis functions. Other authors have tried to
reduce the iteration time in the SCF algorithm by
suppressing the n3 diagonalization process of the Fock
matrix [9]. Though the idea is without question appeal-
ing, the ultimate success in its implementation is yet to
be achieved, since a large set of linear equations must be
solved. Others have attempted to develop a one-electron
e�ective Hamiltonian [10] with e�ective potentials by
taking advantage of a localized picture of bond-type
orbitals in alkanes. Various methods have been imple-
mented in semiempirical calculations such as a divide-
and-conquer technique [11] and a localized molecular
orbital pseudo-diagonalization method [12]. This work
represents the ®rst stages of the development of a non-
orthogonal extremely localized HF method which is
intended to provide fast, accurate results for large
systems.

A trivial way to reduce the total time to perform an
HF calculation is to reduce the number of iterations to
reach convergence. A robust and e�cient method with a
fast convergence rate is a strong criterion, and its e�-
ciency is enhanced if the starting point is close to the
solution (i.e., the initial ``guess'' vectors have been well-
designed for a particular problem). Here, we present
a new method to perform accurate approximate HF
calculations with a perspective of e�ciency (e�ciency in
convergence and generation of a quality starting point)
through the use of localized non-orthogonal orbitals.
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Since the early days of HF theory [13], orthogonal
orbitals have been used to minimize the energy. The
a priori constraint that orthogonality represents has
been circumvented by the introduction of the Fock op-
erator. The HF orbitals are eigenvectors of the Fock
operator and thus form an orthogonal set of orbitals. By
using that property, the standard convergence method
obtains the updated orbitals as eigenvectors of a Fock
operator and thus maintains orthogonality. However,
the HF energy is not a function of the orbitals individ-
ually but of the space they engender. Indeed, trans-
forming an orthogonal to a non-orthogonal set of
orbitals within the HF space does not change the energy.
The drawback of this transformation is the increased
complexity of the formula to calculate the energy. The
development of post-HF theories has also used orthog-
onal orbitals as the simplicity of the formulas allows an
e�cient calculation of the Hamiltonian matrix elements.
In MCSCF calculations, the orthogonality conditions
have been introduced implicitly (as opposed to the
introduction of Lagrange multipliers) through unitary
transformations applied to an orthogonal basis set of
orbitals [14]. Only a few groups have faced the com-
plexity of non-orthogonal orbitals in general multicon-
®guration calculations [15]. Non-orthogonality reduces
the need for large CI expansions, and gives a more
chemical and interpretative picture in ab initio calcula-
tions. The chemical sense of orbitals has always been
present in theoretical chemistry either in the group the-
oretical or the localized representation.

In the ®rst part of this work, we discuss alternate
formulations of the SCF algorithm. The second part is
devoted to the derivation of a localized non-orthogonal
orbital HF algorithm and its potential for use in large
systems. Some results showing the accuracy, but not the
scalability, of the method are presented in the third part.
All derivations are performed for closed-shell HF wave
functions but can be adapted to ROHF or UHF wave
functions with minor changes.

2 Theoretical development of ELMO

For N electron pairs, the HF wave function W can be
written as a Slater determinant built with the HF
orbitals:

W � ju1u1 . . . uNuN j : �1�
If the orbitals are taken to be orthogonal, the total HF
electronic energy has the following form:

E �
XN

i�1
2hi �

XN

i;j�1
2 Jij ÿ Kij ; �2�

where hk; Jkl and Kkl are de®ned as:

hk �
Z
1

uk�1� T ÿ
X

a

Za

ra1

 !
uk�1� ds1

Jkl �
Z
1

Z
2

uk�1�uk�1�
1

r12
u1�2�u1�2� ds1 ds2 �3�

Kkl �
Z
1

Z
2

uk�1�u1�1�
1

r12
uk�2�u1�2� ds1 ds2 :

When a set of Lagrange multipliers is introduced to
account for the orthogonality conditions, a new func-
tion, E0, of the orbitals is de®ned.

E0 � E ÿ
XN

i;j�1
eij�huijuji ÿ dj

i � : �4�

The HF orbitals which minimize E0 satisfy Eq. (5)

8 k � 1;N

@E0

@ujk
� 0 �5�

F ujk �
XN

l�1
eklujl ;

where F is the Fock operator.
Thus, the HF orbital space is invariant for the Fock

operator, but this condition does not guarantee that the
solution will give the minimum energy. Because F is a
function of the HF orbitals, the problem is solved self-
consistently. Let us take the particular case of a ®nite
basis set and the matrix equation form of the Roothaan-
Hall equations [13]. Let C be the rectangular matrix of
the optimized orbital coe�cients in an orthogonal basis
set, then Eq. (5) can be written as:

FC � Ce ; �6�
where the Fock matrix F is a function of C say F�C�.

The usual way to solve Eq. (6) is to use an implicit
iterative scheme (¯uid dynamics vocabulary) as follows:

F�Cn�Cn�1 � Cn�1en ; �7�
Cn representing the matrix C at iteration n. In simple
cases, this method is reliable and (in general) stable. In
cases where the method is unstable, level-shifting [16a]
and direct inversion of the iterative subspace (DIIS) [16b]
can be employed to converge the calculation. However,
applying this scheme also minimizes the quantity G:

G �
XN

i�1
�hi � ei� ; �8�

in which ei are the N lowest eigenvalues of F. The
quantity G is equal to the total energy if one uses the HF
orbitals. For some particular systems (especially those
containing transition metals), it happens that the implicit
scheme produces a set of orbitals (sometimes extremely
close to the HF orbitals) for which G is lower than EHF.
At that point, the implicit scheme diverges since it
minimizes G and can never go up to reach the HF
energy. There are numerous examples of systems in
which a ``broken symmetry'' solution apparently has a
lower energy [17]. The problem disappears with the
implementation of level-shifters but it often requires 15
iterations to converge using a set of guess orbitals that
would give an energy less than 1 kcal/mol above the HF
energy. Thus, the implicit scheme (with level-shifters or
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DIIS implementation) does not take full advantage of
being initialized with a well-designed set of molecular
orbitals (MOs), because several iterations are needed for
DIIS to develop an approximate Hessian of su�cient
accuracy to converge to a proper solution.

Another manner of solving Eq. (2) is an explicit
iterative scheme, similar to gradient methods:

F�Cn�Cn � Cn�1en : �9�
Because the Fock matrix has large positive eigenvalues,
this method is extremely unstable, and diverges rapidly.
However, using a low-order Krylov-space expansion
built upon Cn [18], it is possible to determine an accurate
approximation of the solution of the implicit scheme
described above.

The introduction of Lagrange multipliers to maintain
the orthogonality constraints tremendously complicates
gradient techniques compared to performing an implicit
iterative scheme and requires several n2N (where n is the
number of basis functions) processes if one only solves
for the occupied orbitals.

Generally e�cient gradient methods have only been
used while implicitly integrating the orthogonality con-
ditions. For example, de®ning the variables as the matrix
elements of a unitary transformation applied to an or-
thogonal set of orbitals leads to a method that requires
several n3 processes such as matrix products, orbital or-
thogonalization and resolution of large matrix equations.

An alternative to this paradoxical situation is to
remove the orthogonality constraints and use e�cient
gradient techniques from numerical analysis. The price
is, a priori, more complex formulae to gain e�cient
convergence. Using Lowdin's derivation [19], the total
electronic energy using non-orthogonal orbitals �ui�;
i � 1;N in the HF wave function W is:

W � ju1u1 . . . uNuN j �10�

E �
XN

i;j�1
2hijSÿ1ij �

XN

i; j; k; l�1
�ijjkl� 2Sÿ1ij Sÿ1kl ÿ Sÿ1ik Sÿ1jl

� �
;

�11�
where Sÿ1 is the inverse of the overlap matrix between
the MOs. Sij, hij, and �ijjkl� are de®ned as follows:

hij �
Z
1

ui�1� T ÿ
X

a

Za

ra1

 !
uj�1� ds1

�ijjkl� �
Z
1

Z
2

ui�1�uj�1�
1

r12
uk�2�u1�2� ds1 ds2 �12�

Sij � huijuji : �13�
These formulae can be used directly to minimize the
energy with respect to the natural variables of the
problem: the MO coe�cients in the basis sets.

The number of variables is then equal to nN . With the
orthogonality constraints, there are nN ÿ N�N � 1�=2
independent variables, and N�nÿ N� independent vari-
ables when using Levy's exponential transformation [14].
The number of variables becomes huge for a large system,

particularly if the basis set is rich. For example, to study
an alkane CmH2m�2 with a triple-f� polarization basis
set [20] (C:5s3p1d/H:3s1p), the total number of variables
would be proportional to m2 and would reach 1:2� 106

for m equal to 100 with 3112 functions in the basis set.
Because the use of non-orthogonal orbitals is not a

restriction, one can achieve the goal of obtaining
chemically intuitive orbitals by means of non-orthogonal
localized orbitals. It can be argued that the useful in-
formation and the time saving from the use of spatial
symmetry would then be lost. This argument can easily
be overcome by the de®nition of large systems as systems
without global symmetry (crystals and C60 are not con-
sidered as truly large systems from the point of view of
this study due to their high symmetry). In this view, it
would be equivalent to performing a HF calculation with
orthogonal orbitals and localizing the converged orbitals
with an ad hoc criterion to get an equivalent localization
picture. Generally, localization techniques (such as Boys'
method [21] or internal projection of ad hoc localized
orbital [22]) calculate ``localized'' orbitals by trans-
forming the HF orthogonal orbitals into (orthogonal or
non-orthogonal) orbitals that satisfy a localization cri-
terion under the constraint that the HF orbital space and
the localized orbital space must be identical. Such a lo-
calization technique ensures that the energy is invariant
and de®nes ``localized'' orbitals as orbitals that have a
major component on a small number of basis functions.
However, if an orbital is ``localized'' in this manner, it
does not mean that the orbital is developed on a limited
number of basis functions. Apart from the large coe�-
cients, the orbital has small coe�cients on all the basis
functions and nothing ensures that these small coe�-
cients contribute little to the total energy. For example in
CH4, localized non-orthogonal orbitals can be extracted
from the HF orbitals by a least-square minimization of
the coe�cients of a rCH orbital on the CGTOs of the 3 H
atoms not involved in the bond. After setting the small
coe�cients to zero, the recalculated total energy is
10.3 kcal/mol above the HF energy. With the constraint
that the ``localized'' orbital space and the HF orbital
space are identical, the ``localized'' orbitals are expanded
over all the basis functions; thus they are still delocalized.

Every other de®nition of localization would change
the HF orbital space and many result in a total energy
higher than the HF energy for a given basis set. In this
paper, a general de®nition of localization is to impose a
requirement that an orbital have non-zero elements over a
limited number of basis functions. Previous work imple-
mented this type of localization by de®ning local basis
sets for bonds or lone pairs [23] or a distance range for
basis set cuto�s [24]. Similarly, in this work, extremely
localized molecular orbitals (ELMOs) are fully opti-
mized with the aforementioned localization constraint
using linear expansion coe�cients as variables. Since the
localized and HF orbital spaces are a priori di�erent,
and the total energy (of a single con®guration Slater
determinant wave function) will be higher than the HF
energy is a given basis set. Thus, this de®nition of lo-
calization reduces the number of intrinsic variables of
the optimization process. For example, to study an
alkane CmH2m�2 with a triple-f� polarization basis set
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[20] (C:5s3p1d/H:3s1p) and a two-atom bond localiza-
tion pattern, the number of variables is proportional to
m, and is equal to 9,312 for m equal to 100 and thus
could be performed on a small computer. This de®nition
is the central assumption in ELMO.

Using the above orbital localization de®nition, one
way of optimizing the orbitals has been derived using a
non-orthogonal con®guration interaction with single
excitations (CIS) procedure [25]. This method requires
the evaluation of Hamiltonian matrix elements in a non-
orthogonal set of Slater determinants. In the particular
case of a single con®guration with doubly occupied or-
bitals, the dimension of the CI matrix would be equal to
2N�nÿ N� � 1, a number which would restrict the
method to small systems. This dimension can be reduced
to N�nÿ N� � 1 by applying a singlet spin-coupled
scheme [26] but does not represent a fundamental
change in the method. The two-electron integral trans-
formation from atomic orbital (AO)-basis set to a MO-
basis set in such a technique and the evaluation of a large
number of non-orthogonal CI matrix elements are lim-
iting factors to the use of this method in large systems.

2.1 ELMO orbital optimization method

Indices p; q; r; s and a; b will refer to the basis functions;
indices i; j; k; l will refer to the occupied orbitals; n is the
total number of basis functions; N is the number of
occupied orbitals; and m is the total number of variables.
The variables of the method are the orbital expansion
coe�cients stored in a matrix C:

8 i � 1;N

ui �
Xn

p�1
Cpivp

�14�

where �vp�; p � 1; n are the basis functions.

The de®nition of the ELMO localization can be ex-
pressed by the fact that the matrix C is sparse. In such a
case, the variables will be stored in a one-dimensional
array X. The total energy can be written in terms of a
density matrix q so that:

E �
Xn

p;q�1
2hpqqpq �

Xn

p;q;r;s�1
�pqkrs�qpqqrs

qpq �
XN

i;j�1
CpiCqjSÿ1ij

�pqkrs� � 2�pqjrs� ÿ �prjqs�

�15�

with

hpq �
Z
1

vp�1� T ÿ
X

a

Za

ra1

 !
vq�1� ds1

�pqjrs� �
Z
1

Z
2

vp�1�vq�1�
1

r12
vr�2�vs�2� ds1 ds2 :

�16�

The energy calculation requires the evaluation of the

matrix Sÿ1, but this matrix has relatively small dimen-
sion (number of electron pairs) and can be calculated

without di�culty even for a very large system. The
matrix elements Sij are calculated by:

Sij �
Xn

p;q�1
CpiCqjrpq

rpq � hvpjvqi :
�17�

The quantities rpq, hpq, and �pqjrs� depend only on the
basis set and can be recalculated when required as in the
direct-SCF technique. It can be noted that the evalua-
tion of matrices S and q can be done with approximately
Nn2 operations (with an intermediate storage matrix) in
the case that C is not a sparse matrix. However, the
localization de®nition reduces the number of operations
to n�m with an additional storage, m being the total
number of variables. Two matrices A and B, de®ned
as follows, can be computed in a small number of
operations if the sparse matrix C is used in its linear
vector form X:

8 k � 1;N

8 q � 1; n

Akq �
XN

j�1
CqjSÿ1kj

Bkq �
Xn

p�1
Cpkrpq :

�18�

The evaluation of S and q can also be obtained in a
limited number of operations. Several important equa-
tions can be derived from the SSÿ1 � 1 relation:Xn

q�1
BiqAjq � dj

i

Xn

p;q�1
qpqrpq � N :

�19�

Interestingly, the matrix product rq can be computed in
Nn2 operations (instead of n3) by using the relationship:XN

k�1
BkpAkq �

Xn

r�1
rrpqrq : �20�

The localization pattern is conserved throughout the
iterations by calculating only the gradient of the energy
with respect to the variables and de®ning a step vector
dX that has the same localization de®nition as the
vector X.

A standard Newton-Raphson procedure is derived
using a second-order Taylor series expansion at the
current point X:

E�X � dX � � E�X � �
Xm

o�1
Grad�X �odXo

� 1

2

Xm

o;o0�1
dXoHess�X �oo0dXo0 : �21�

The minimum of the second-order energy is obtained for
dX that satis®es the matrix form of the Newton-
Raphson equation:
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Hess dX �Grad � 0 : �22�
Though extremely e�cient to converge in a limited
number of iterations, this method requires the calcula-
tion of a large Hessian matrix (Hess) which can be very
expensive even with the localization procedure. Here, a
quasi Newton-Raphson method is proposed, based on the
fact that orbitals are strongly independent (and not
connected by the orthogonality constraint); thus, the
change in one orbital can be partially decoupled from the
others. A good approximation of the Hessian matrix can
be developed by a diagonal orbital blocking (blocks of
second derivatives corresponding to a given orbital). The
Hessian coupling elements can be introduced numeri-
cally in the course of the iterations by ®nite di�erences of
the accumulated gradients to achieve quadratic conver-
gence. The only necessary elements to be derived are:

dE
dCak

�X� ;
d2E

dCak dCbk
�X� ;

�23�

in which, Cak and Cbk are variables of the problem.
The gradient and Hessian calculation require the ®rst

and second derivatives of thematrix elements qpq and Sÿ1ij .

First derivatives:

dqpq

dCak
�
XN

i;j�1
CpiCqj

dSÿ1ij

dCak
� da

p Akq � da
q Akp �24�

the relation dSÿ1 � ÿSÿ1 dSSÿ1 allows one to calculate
the ®rst derivatives of Sÿ1:

dSÿ1ij

dCak
� ÿSÿ1ik

XN

l�1
BlaSÿ1lj ÿ Sÿ1jk

XN

l�1
BlaSÿ1li �25�

and ®nally,

dqpq

dCak
� da

pAkq � da
qAkpÿAkp

XN

l�1
BlaAlq ÿ Akq

XN

l�1
BlaAlp :

�26�
The matrix A� � tBA is introduced and can be computed
in Nn2 operations, stored in memory and its elements
addressed when needed to compute the ®rst derivative of
the matrix elements of q:

dqpq

dCak
� da

pAkq � da
qAkp ÿ AkpA�aq ÿ AkqA�ap �27�

Second derivatives:

d2qpq

dCakdCbk
� da

pd
b
q � db

pd
a
q

� �
Sÿ1kk � da

p

XN

j�1
Cqj

dSÿ1kj

dCbk

� da
q

XN

j�1
Cpj

dSÿ1kj

dCbk
�
XN

i;j�1
CpiCqj

d2Sÿ1ij

dCakdCbk

� db
p

XN

j�1
Cqj

dSÿ1kj

dCak
� db

q

XN

j�1
Cpj

dSÿ1kj

dCak
: �28�

Another computational advantage can be achieved when
calculating the matrix elements of the matrix product
tBSÿ1 corresponding to the couple �a; k� representing a
variable. The full matrix product is thus avoided and a
one-dimensional array can be stored. However, for
simplicity of notation, the element �tBSÿ1�ak will be
denoted B�ak or in matrix notation

B� � tBSÿ1 : �29�
The second derivative of Sÿ1, d2Sÿ1 is calculated using:

d2Sÿ1

dXdY
� Sÿ1

dS
dY

Sÿ1
dS
dX

Sÿ1 � Sÿ1
dS
dX

Sÿ1
dS
dY

Sÿ1

ÿ Sÿ1
d2S

dXdY
Sÿ1 : �30�

Thus, the second derivative analytical expression be-
comes:

d2qpq

dCakdCbk
� da

pd
b
q � db

pd
a
q

� �
Sÿ1kk

ÿ da
p Sÿ1kk A�bq � AkqB�bk

� �
ÿda

q Sÿ1kk A�bp � AkpB�bk

� �
ÿ db

p Sÿ1kk A�aq � AkqB�ak

� �
ÿdb

q Sÿ1kk A�ap � AkpB�ak

� �
�Akp B�akA�bq�B�bkA�aq

� �
�Akq B�bkA�ap� B�akA�bp

� �
� Sÿ1kk A�bpA�aq � A�bqA�ap

� �
� 2AkpAkq

�XN

i;j�1
BiaBjbSÿ1ij ÿ rab

�
: �31�

The Fock matrix F can be introduced to accelerate
the Hessian and gradient calculation:

Fpq � hpq �
X
r;s

�pqkrs�qrs : �32�

The gradient and Hessian formulas can be simpli®ed to
the following expressions:

dE
dCak

�X� �
X
p;q

2Fpq
dqpq

dCak

d2E
dCakdCbk

�X� �
X
p;q

2Fpq
d2qpq

dCakdCbk

� 2
X

p;q;r;s

�pqk rs� dqpq

dCak

dqrs

dCbk
: �33�

From the practical point of view, the Fock matrix is built
up by accumulation of the contributions of the two-
electron integrals. The gradient vector is then calculated
by a n2-process in which the ®rst derivatives are
calculated directly without any additional storage. The
Hessian formula can be separated into two contributions.
The ®rst contribution, involving second derivatives of the
density matrix, can be evaluated at low cost by following
the gradient algorithm. The second contribution involv-
ing products of ®rst derivatives is a priori the di�cult
part of the calculation since it cannot take advantage of
any possible preliminary calculations (the ®rst derivatives
cannot be stored in memory for a large system).
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2.2 The quasi Newton-Raphson algorithm

The algorithm proposed here is based on a calculation of
an approximate blocked Hessian matrix of high quality
using a Davidon-Fletcher-Powell (DFP) [27] or Broy-
den-Fletcher-Goldfarb-Shanno (BFGS) [27] updating
technique in the course of the iterations. These two al-
gorithms di�er only numerically with the BFGS method
considered the superior to DFP. The N blocked-Hessian
matrix is approximated by the formula:

d2E
dCakdCbk

�X� �
X
p;q

2Fpq
d2qpq

dCakdCbk

 !�
�34�

in which:

d2qpq

dCakdCbk

 !�
� da

pd
b
q � db

pd
a
q

� �
Sÿ1kk

ÿ da
pA�bq � da

qA�bp � db
pA�aq � db

qA�ap

� �
Sÿ1kk

� Sÿ1kk A�bpA�aq � A�bqA�ap

� �
� 2AkpAkq

�XN

i;j�1
BiaBjbSÿ1ij ÿ rab

�
: �35�

This particular choice has been made because of its
simplicity since it requires only the Fock matrix and also
because it has the same zero eigenvalues and eigenvec-
tors as the true Hessian matrix (see Appendix). The fast
rate of convergence demonstrated below justi®es a pos-
teriori the validity of this choice. An algorithm in N
Newton-Raphson (N-R) steps can be easily implemented
and used at a low cost until all the N-R steps can be
completed successfully (a trust radius step restricted
Fletcher method [28] is implemented in cases for which a
negative eigenvalue of the Hessian matrix is encountered
or if the N-R step goes beyond a trust radius). At that
point, the blocked Hessian matrix is not recalculated but
its inverse is updated using the DFP or BFGS algo-
rithms thus taking into account numerically the density
matrix ®rst derivative contributions to the blocked
Hessian as well as the inter-orbital Hessian matrix ele-
ments. The orbital decoupling hypothesis, e�cient in the
N-R ®rst steps of the iterative process, may be prob-
lematic when close to convergence if several orbitals are
localized in the same region of space. In that case, the
DFP or BFGS updating technique must include nu-
merically the coupling between the orbital variations and
require saving only two (DFP) or three (BFGS) vectors
every iteration. Using the DFP updating technique, the
complete inverse Hessian matrix at iteration �i� is of the
form:

Hÿ1i � Hÿ1blocked �
Xiÿ1
j�1

ajuj 
 uj �
Xiÿ1
j�1

bjvj 
 vj : �36�

In the BFGS updating technique, another term of the
form

Piÿ1
j�1 cjwj 
 wj is added to the DFP inverse

Hessian matrix.
The quasi Newton-Raphson step dX � Hÿ1i Grad is

calculated in two separate steps. The diagonal block

matrix-vector product can be done at a low cost in an N
matrix-vector product of small size. Then, the updating
vectors are retrieved sequentially and used to calculate a
contribution to dX using the relation �u
 u�v � �u � v�u
that requires only a scalar dot product of two vectors.

2.3 Convergence of the ELMO method

In order to test the ELMO algorithm convergence
properties, the molecule H2CO is taken as an example.
A triple-f� polarization [20] (C,O:5s3p1d/H:3s1p) basis
set is used at the HF-optimized geometry [29]. The initial
localized MO guess is constructed with two-atom bond
orbitals and corresponds to 110 variables (380 variables
in a standard HF calculation) in the ELMO optimiza-
tion procedure. The results using the DFP and BFGS
updating techniques are presented in Tables 1 and 2. In
order to compare the convergence of ELMO to the
standard HF method convergence, the same initial guess
is transformed to orthogonal orbitals and used as the
initial guess in two HF calculations: one using the basic
implicit scheme described previously and the other using
the standard HF method with level shifters and DIIS.
The results are presented in Tables 3 and 4. The standard
implicit scheme convergence de®ciencies are improved
with the DIIS implementation. The convergence behav-
ior of the DFP and BFGS are similar to one another and
are comparable with the convergence of the DIIS
procedure in standard HF methods. According to the
systems studied to date, the BFGS updating technique
can save a small number of iterations compared to the
DFP algorithm. As expected, the convergence in the
ELMO method is achieved signi®cantly more precisely
for the energy than the convergence for the gradient
vector norm.

2.4 In¯uence of the localization constraints on the total
energy and the density function

The localization constraint is evaluated by the energy
di�erence between the HF and ELMO energies and
summarized for four small systems in Table 5. This
energy di�erence can be compared with the contribution
of the orbital optimization to the total energy. One can

Table 1. Extremely localized molecular orbital (ELMO) calcula-
tion of formaldehyde using a quasi Newton-Raphson algorithm
with the DFP updating technique

Iteration Energy (a.u.) Grad. norm DE (a.u.) Step norm

1 )113.873607 0.408580 0.107626
2 )113.896839 0.118891 )0.023232 0.051689
3 )113.898693 0.052097 )0.001854 0.002441
4 )113.898863 0.017386 )0.000169 0.000838
5 )113.898889 0.005365 )0.000026 0.000027
6 )113.898892 0.001845 )0.000003 0.000012
7 )113.898893 0.000861 )0.000001 0.000008
8 )113.898893 0.000358 )0.000000 0.000001
9 )113.898893 0.000090 )0.000000
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distinguish two di�erent e�ects in an orbital optimiza-
tion process. The ®rst one is connected with the mixing
of pure AOs. This e�ect is easily calculated by perform-
ing a HF-LCAO calculation in a minimal basis set made
of the pure AOs of the free atoms, which are calculated
with an extended basis set. The second e�ects, referred

to as the orbital optimization e�ect [30], is connected
with a change in the shape of the orbitals to satisfy
various conditions such as the atomic cusp and the long
range behavior of an MO. The di�erence between the
HF and HF-LCAO is associated with the second e�ect.
The relative di�erence between the optimization e�ect
and the localization constraint is small in all cases (less
than 7%) and will generally be a small e�ect. Particu-
larly, the ELMO calculations performed in this work use
the most localized orbitals one can think of i.e. two-atom
bonds (this small energy constraint could even be
decreased by extending the localization of a bond to
include its closest neighbor atoms). In the H2O molecule
for example, the two non-bonding lone pairs were
localized on the oxygen atom only. The localization
constraints of the non-bonding orbital is responsible for
a large amount of the energy di�erence with the HF
energy.

In order to gain insight into the orbital optimization
mechanism in the ELMO theory, the formaldehyde
molecule H2CO is taken as an example because the CH
bond orbitals are de®ned in a unique way by the two-
atom bond localization picture. The geometry was op-
timized at the HF level in a triple-f� polarization basis
set [20]. From the MO expansion coe�cients of the CH
orbital, it has to be noted that the ratio between the
coe�cients relative to the px and pz CGTOs in the same
shell varies from shell to shell. One would have expected
this ratio to be constant for all p shells and be a function
only of the COH angle. A contour plot of the CH
molecular orbital in the COH plane is given in Fig. 1
showing the distortion of the CH bond outside the
bonding region. The two-atom ``banana'' bond in the
cyclopropene has also been studied and a contour plot in
the C3 plane is given in Fig. 2.

A second comparison can be made on the density
functions at the HF and ELMO levels. Because the total
energies are similar, it is expected that the total densities
may be comparable. To quantify the di�erence density
function �qHF ÿ qELMO� and not its value on particular
points, it is possible to calculate the variance between the
densities as the integral [22]

jqHF ÿ qELMOj�
�������������������������������������������������������Z Z Z

space

�qHF ÿ qELMO�2
s

ds: �37�

The results are given in Table 5 for small molecules. This
distance is also compared with the distance between the
HF and HF-LCAO density functions. The distance

Table 2. ELMO calculation of formaldehyde using a quasi New-
ton-Raphson algorithm with the BFGS updating technique

Iteration Energy (a.u.) Grad. norm DE (a.u.) Step
norm

1 )113.873607 0.408580 0.107626
2 )113.896839 0.118891 )0.023232 0.057516
3 )113.898679 0.056213 )0.001809 0.003871
4 )113.898860 0.001148 )0.000181 0.001148
5 )113.898889 0.006057 )0.000027 0.000091
6 )113.898892 0.001790 )0.000003 0.000022
7 )113.898893 0.000643 )0.000001 0.000015
8 )113.898893 0.000324 )0.000000 0.000006
9 )113.898893 0.000099 )0.000000

Table 3. Calculation of formaldehyde using a standard Hartree-
Fock (HF) method with a basic implicit scheme

Iteration Energy (a.u.)

1 )113.873607
2 )113.906958
3 )113.908887
5 )113.909227
10 )113.909310
15 )113.909320
20 )113.909321

Table 4. Calculation of formaldehyde using a standard HF
method with level-shifters and direct inversion of the iterative
subspace (DIIS) implementation

Iteration Energy (a.u.) Grad. norm DE (a.u.)

1 )113.873607 0.121372 Level-shifters
2 )113.898970 0.030026 )0.025361 ''
3 )113.904458 0.025306 )0.005488 ''
4 )113.907089 0.018429 )0.002631 ''
5 )113.908227 0.013500 )0.001137 DIIS
6 )113.909287 0.002133 )0.001060 ''
7 )113.909319 0.000292 )0.000032 ''
8 )113.909320 0.000147 )0.000001 ''
9 )113.909321 0.000039 )0.000000 ''

Table 5. Comparison Between HF, HF-LCAO, ELMO and GMO2(PEMCSCF) total energiesa for several small molecules

CH4 H2O NH3 C2H6

Bond length (B) CH = 2.04620 OH = 1.77746 NH = 1.88646 CC = 2.88638
E(HF) (a.u.) )40.212074 )76.056015 )56.216625 )79.257272
E(ELMO) (a.u.) )40.207443 (2.9) )76.045341 (6.7) )56.208059 (5.4) )79.238197 (12.0)
E(HF-LCAO) (a.u.) )40.048021 (102.9) )75.904338 (95.2) )56.032982 (115.2) )79.985242 (170.7)
E(GMO2) (a.u.) )40.272817 ()38.1) )76.097563 ()26.1) )56.269492 ()33.2) )79.363848 ()66.9)
jqHF-qLCAOj 0.19046 0.18630 0.18679 0.23293
jqHF-qELMOj 0.00401 0.01129 0.00819 0.00677
jqHF-qGMO2j 0.01575 0.01567 0.01468 0.02074

a Relative energies compared to HF are given in parentheses (kcal/mol)
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between the ELMO and HF density functions is one
order of magnitude smaller than the distance between the
HF and HF-LCAO density functions. It has been noticed
previously that the HF density and the density obtained
with a calculation including a large amount of correla-
tion energy are similar. This similarity has been used as a
guiding force for density functional theories that use the
HF density to calculate an accurate total energy. As a
measure of the e�ect of electron correlation, the distance
between the HF and GMO2(PEMCSCF) [31] density

functions are also given in Table 5. GMO2(PEMCSCF)
has been chosen for its simplicity. The optimized orbitals
are the natural orbitals and do not necessitate any density
matrix diagonalization. However, a reasonably large
amount of ``near-degenerate'' correlation energy is
obtained at this level of theory. The distance between
the HF and ELMO density functions is then between 1
and 4 times shorter than the distance between the HF
and GMO2(PEMCSCF). Thus, the correlation energy is
large compared to the localization energy constraints.

The two-atom localized bond picture used in the
ELMO calculations gives a very large fraction of the
orbital optimization e�ects, reproducing the HF results
(total energy and density function) with a relatively high
accuracy. In this tight localization picture, the missing
e�ects can be clearly expressed as the delocalization of
the major component of a bond to other parts of the
molecule.

2.5 Orbital delocalization

As a result of optimizing two-atom bond orbitals in
ELMO, the total energy is higher than the HF energy.
This energy di�erence, though small (2±20 kcal/mol),
could be decreased by delocalizing the orbitals over the
molecule and is zero in the limit of fully delocalized
orbitals. However, the number of variables to be
optimized increases drastically with the extension of
the localization pattern. Since the delocalization energy
(di�erence between the HF and the ELMO energies)
is small, an approximate delocalization of the orbitals
could be achieved by the diagonalization of the Fock
matrix built using the converged ELMO orbitals.
However, for large systems, this process cannot be
performed at a low cost and an approximate treatment
will be implemented.

From the Fock matrix built at the last iteration of the
ELMO procedure, the canonical orbitals (that diago-
nalize the Fock matrix over the occupied orbitals and
are linear combinations of the two-atom bond orbitals,
thus containing no delocalization information) are cal-
culated. The basis set is completed with an orthogonal
set of MOs and the Fock matrix is easily transformed
from the AO basis set to a MO basis set. An alternative
using a low-order Krylov space [18] is currently under
development. The Fock matrix has then the following
pattern:

D e
e F 0

in which D is diagonal. The Fock matrix elements eij are
intrinsically small and couple the occupied and virtual
orbitals. The quantity j is a measure of the Brillioun-
violation. A small value re¯ects that the major bonding
e�ects have been included at this stage, where j is
written as

j �
��������������������XN

i�1

XnÿN

j�1
e2ij

vuut : �38�

Fig. 1. Contour plot of the rCH two-atom bond of H2CO in the
plane of the molecule

Fig. 2. Contour plot of the rCC two-atom bond of cyclopropane in
the C3 plane
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It is then possible to obtain accurately the N func-
tions corresponding to the N lowest eigenvalues by a
Jacobi correction (JC) [32], which allows the delocali-
zation of the orbitals. The JC (order Q) consists in a
succession of Q Jacobi sweeps which reduce the value of
the quantity j. The method converges in the limit of
in®nite order to a result equivalent to diagonalization
of the Fock matrix, but requires a smaller number of
operations compared to the diagonalization of the entire
matrix. In practice, a small number of passes are re-
quired for the method to approach convergence if the
localization pattern of the ELMO procedure allows for
an optimized treatment of the major bonding e�ects. In
the following section this sine qua non condition will be
examined in details. Nota Bene: It is not possible to
obtain any useful reliable total energy stabilization from
the orbital delocalization process only, since the eigen-
values of F do not properly account for the two-electron
interaction energy. To remedy this intrinsic problem, the
total energy is evaluated exactly by the actual compu-
tation of the Fock matrix with the delocalized orbitals.
Using these delocalized orbitals, the density matrix is
calculated and can be expressed as q�ELMO� � dq in
which the elements of dq are intrinsically small. The
Fock matrix is evaluated e�ciently, using a pre-screen-
ing on dq, as F�ELMO� � dF, and the total energy is
calculated at low cost by the usual formula in a n2

process:

E � Tr��h� F �q� : �39�
Though the delocalized ELMO orbitals are obtained by a
Jacobi process, the method is variational and one can
state that the total energy is higher than the HF energy.
Application of ELMO(JC) to various small systems is
shown in Table 6. The di�erence between the HF and
ELMO(JC) total energies ranges from 0.0 to 1.0 kcal/mol
and is, in all cases, extremely small compared to the
atomization energy.

3 Applications

3.1 The relative stability of propene versus cyclopropane

In order to test the reliability of the method in
problematic cases, the energy di�erence between two
isomers of C3H6 has been calculated at various levels of
theory. Since the two-atom bond localization constraint
will be di�erent between r- and p-bonds, it is expected
that the relative energy di�erence between cyclopropane
and propene at the ELMO and HF levels will be
di�erent. The geometry of both isomers are optimized at
the HF level in a triple-f� polarization basis set [20]

(CH3 is constrained to possess a C3 axis) and the two-
atom bond orbitals were optimized at the ELMO level of
theory. The ELMO(JC) theory was then used to obtain
the delocalization e�ects. The results are presented in
Table 7. The di�erences between the ELMO and HF
energies are small, 19.0 and 24.8 kcal/mol for propene
and cyclopropane, respectively. However, the relative
stability of propene versus cyclopropane is 5.8 kcal/mol
larger than the HF value. This large di�erence can be
explained by the di�erent localization energy constraint
in the r and p two-atom bonds. Allowing the delocal-
ization in the treatment of ELMO(JC) gives a relative
energy between the two isomers of 8.1 kcal/mol com-
pared to 8.0 kcal/mol at the HF level. The energy
di�erences between ELMO(JC) and HF for both
isomers reaches chemical precision.

3.2 The p-bond orbital delocalization

The use of a two-atom bond is problematic in cases of
p-orbital delocalization of p-conjugation. However, it
will be shown in several examples that these delocaliza-
tion e�ects may be well described at the ELMO level.
However, in order to account for the reactivity of a

Table 6. Comparison between ELMO, ELMO(JC) and HF total
energiesa for various small systems

ELMO (a.u.) ELMO(JC) (a.u.) HF (a.u.)

CH4 )40.20744 (2.9) )40.21197 (0.06) )40.21207
NH3 )56.20806 (5.4) )56.21643 (0.12) )56.21662
H2O )76.04534 (6.7) )76.05579 (0.14) )76.05601
(H2O)2 )152.09870 (13.1) )152.11909 (0.3) )152.11957
H2CO )113.89717 (7.6) )113.90892 (0.25) )113.90932
C2H2 )76.84482 (1.8) )76.84766 (0.03) )76.84770
C2H4 )78.04564 (9.9) )78.06083 (0.43) )78.06151
C2H6 )79.23820 (12.0) )79.25669 (0.37) )79.25728
CO )112.77502 (1.2) )112.77682 (0.07) )112.77694
CO2 )187.68615 (9.3) )187.70039 (0.31) )187.70089
HCOOH )188.80934 (16.6) )188.83472 (0.70) )188.83584
CH3Li )47.02843 (4.2) )47.03497 (0.1) )47.03519
CH3F )139.06451 (18.7) )139.09268 (1.0) )139.09437
CH3Cl )499.12694 (6.3) )499.13655 (0.4) )499.13713
CH3OH )115.05402 (20.0) )115.08420 (1.07) )115.08591
CH3NH2 )95.22077 (18.4) )95.24851 (0.95) )95.25003
CH3CN )131.94848 (13.9) )131.96943 (0.1) )131.97068
HCONH2 )168.97399 (14.5) )168.99614 (0.5) )168.99702
HCOCH3 )152.94509 (16.0) )152.96944 (0.8) )152.97066
C2H3Cl )536.96618 (14.1) )536.98634 (1.4) )536.98861
C2H3CH3 )117.08106 (19.7) )117.11072 (1.1) )117.11254
HCOCl )572.83636 (9.6) )572.85123 (0.3) )572.85165
ZrH4 )48.61707 (3.9) )48.62285 (0.3) )48.62327
a Relative energies compared to HF are given in parentheses (kcal/
mol)

Table 7. Comparison of
ELMO, ELMO(JC) and HF
total energiesa, b for cycloprop-
ane and propene

ELMO ELMO(JC) ELMO + 1 iter SCF HF

Cyclopropane )117.05700 (24.8) )117.09480 (1.1) )117.09495 (1.0) )117.09651
Propene )117.07886 (19.0) )117.10765 (1.0) )117.10773 (0.9) )117.10919
stability (kcal/mol) 13.72 8.06 8.02 7.96

a Total energies are given in atomic units
b Relative energies compared to HF are given in parentheses (kcal/mol)
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p-bond in a given reaction, some additional delocaliza-
tion may be necessary. In the latter case, the delocali-
zation of the p two-atom bond to its closest heavy atom
neighbors gives results extremely close to the fully
delocalized p-orbitals.

In order to study the delocalization of a p-bond to
the closest heavy atom neighbors, the propene molecule
is examined in detail. The geometry is fully optimized at
the HF level in a triple-f� polarization basis set [20].
The ®rst calculation is performed with pure two-atom
bond orbitals. This results in an ELMO energy higher
than the HF energy by 19.7 kcal/mol, reduced to
1.1 kcal/mol by including the delocalization e�ects. A
second calculation is performed in which the p two-
atom bond is optimized with a delocalization over the
CGTOs of the methyl carbon atom. The optimized
ELMO energy is then higher than the HF energy by
17.5 kcal/mol, or 0.8 kcal/mol after treatment of the
delocalization e�ects. Though the delocalization of the
p-bond at the ELMO level gives a 2.2 kcal/mol stabili-
zation in energy, the JC treatment of the delocalization
e�ects (r and p) was able to take these e�ects into ac-
count accurately, as the di�erence is reduced to only
0.3 kcal/mol. However, in order to properly describe a
nucleophilic reaction in the b-position of a double bond
(as in ketones), the delocalization of the p-bond needs to
be addressed.

Two other systems are studied to show the relative
importance of the delocalization e�ects of two conju-
gated p-bonds: butadiene and propenal. The geometry is
fully optimized at the HF level in a triple-f�polarization
basis set [20] and several ELMO calculations are per-
formed with di�erent localization patterns for the p-
bonds. The results are summarized in Table 8. The JC
takes into account a large amount of the delocalization
e�ects of two-atom bonds. The ELMO(JC) energy is
above the HF energy by 2.2 and 2.7 kcal/mol for pro-
penal and butadiene, respectively. Allowing for a pos-
sible delocalization of the p-bonds towards the closest
heavy atoms reduces the relative di�erence of the ELMO
energy versus the HF energy by 8.5 and 10.4 kcal/mol
for propenal and butadiene, respectively. The r and the
remaining p-delocalization e�ects are treated e�ciently
by the JC and the ELMO(JC) energy is now higher than
the HF energy by only 1.3 and 1.1 kcal/mol. A full de-
localization of the p-bonds only reduces the ELMO en-
ergy by approximately 0.5 kcal/mol and the ELMO (JC)
is only reduced by 0.1 kcal/mol for both molecules. Al-

though the Jacobi treatment is e�cient in evaluating the
delocalization e�ects these examples show the impor-
tance of the optimization of these delocalized bonds and
particularly the importance of local e�ects of the closest
neighbor atoms.

The aromaticity of benzene is considered next. Using
two-atom bonds, only one Kekule structure can be
represented and thus it is expected that delocalization
e�ects are extremely important in this case. At the fully
optimized HF geometry in a triple-f� polarization
basis set [20], a two-atom bond ELMO calculation,
results in a total energy higher than the HF energy by
121.3 kcal/mol. The treatment of the delocalization ef-
fects reduces this di�erence to 30.9 kcal/mol and clearly
demonstrates the inability of p two-atom bonds to
describe the electronic structure of benzene. When the
localization pattern of a p-bond is extended to the two
closest neighbors, the optimized ELMO energy is then
higher than the HF energy by 35.6 kcal/mol without JC
of the r (and remaining p) delocalization e�ects, and
4.0 kcal/mol with JC. Usually fully delocalized p-orbit-
als, the respective numbers are reduced to 30.9 and
3.2 kcal/mol. The treatment of the delocalization e�ect
is accurate enough to treat the extension of a bond
localization to the second neighbor atoms, but the de-
localization to the ®rst neighbors need to be optimized
at the ELMO level.

It should be obvious that the delocalization of a bond
to its neighbors increases the number of variables to be
optimized. But in the case of p-orbitals, described with
pp-CGTOs, the number of variables for delocalizing an
orbital to its closest neighbors is lower than the number
of variables in a r-orbital. Thus delocalizing the p-
orbitals to the closest heavy atom neighbors does not
represent any particularly burdensome optimization
di�culty while insuring the reliability of the result. Sys-
tems involving transition metal bonding to the p-systems
of conjugated molecule (benzene, cyclopentadienyl) will
be presented in future work.

3.3 The two-atom bond orbital transferability

One of the key features of the ELMO method is the
power to generate and take advantage of extremely
accurate guess orbitals and thus enhance the conver-
gence properties of the gradient method by reducing
the number of iterations to converge. As a test for

Table 8. Comparison of
ELMO, ELMO(JC) and HF for
di�erent p delocalization pat-
terns in propene, propenal,
butadiene and benzene

Propene Propenal Butadiene Benzene

ELMOa )117.08106 (19.7) )190.78721 (25.5) )154.92386 (30.4) )230.57819 (121)
ELMOb )117.08464 (17.5) )190.80070 (17.0) )154.94043 (20.0) )230.71481 (35.6)
ELMOc )190.80160 (16.5) )154.94138 (19.4) )230.72228 (30.9)
ELMO(JC)a )117.11072 (1.1) )190.82432 (2.2) )154.96804 (2.7) )230.72223 (30.9)
ELMO(JC)b )117.11128 (0.8) )190.82574 (1.3) )154.97051 (1.1) )230.76519 (4.0)
ELMO(JC)c )190.82616 (1.1) )154.97099 (0.8) )230.76652 (3.0)
HF )117.11254 (0.0) )190.82785 (0.0) )154.97338 (0.0) )230.77157 (0.0)
a Two-atom bond localization
b Delocalization to ®rst neighbors heavy atoms
c Full p-delocalization to heavy atoms. Relative energies compared to HF are given in parentheses
(kcal/mol)
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transferability of two-atom bond orbitals a relatively
small molecule (so that an HF calculation can be
performed in the same triple-f� polarization basis set
[20]) is chosen: CH3ClC@CHCHO (4-chlorobut-2-enal).
The guess two-atom bonds were taken from the
optimized two-atom bonds of small systems, rotated
and normalized to unity. As a ®rst approximation, the
two-atom bond orbital basis set expansion is considered
independent of the bond distance and calculated at the
small system's optimized geometry. One can imagine a
future re®nement by making a database of two-atom
bond orbitals accessed both by the atom bond type and
bond distance. The small systems used to extract the
guess orbitals are given in Table 9, and intentionally
neither represent the best choice of fragment partition
nor include any p-delocalization e�ects. The ELMO
optimization procedure lowers the total energy by
29.8 kcal/mol and the treatment of the delocalization
e�ects lowers it by 29.7 kcal/mol. The ®nal ELMO(JC)
total energy is higher than the HF energy by only
1.4 kcal/mol (Table 10).

3.4 The metal CO bond

The bonding of carbon monoxide (CO) to a transition
metal atom is an interesting example of r-donation from
ligand tometal and p-backdonation frommetal to ligand.
The H2ZrCO model system has been studied in order to
determine necessary conditions on the localization pat-
terns. The electronic structure of isolated CO can be
accurately described at the ELMO level in terms of
optimized localized bond orbitals with the following
orbitals (the atoms on which an orbital is localized are
given in parenthesis): 1sC(C), 1sO(O), non-bonding
hybrid orbital O(O), rCO�CO�, pxCO�CO�, pyCO�CO�
and non-bonding hybrid orbital C�C�. The ELMOenergy
is higher than the HF energy by only 1.2 kcal/mol at the
ELMO level and less than 0.1 kcal/mol at the JC level.
Thus, the treatment of the r-delocalization e�ects in the
CO group is accurate.

The geometry of H2ZrCO was optimized at the HF
level. An e�ective core potential was used for the Zr
metal atom associated with a �3s3p3d� basis set [33] and
a triple-f basis [20] set on all other atoms. The optimized
geometry is shown in Fig. 3. Several ELMO calculations
were performed with di�erent localization patterns. In
all the calculations the 1sC�C�, 1sO�O�, non-bonding
hybrid orbital O�O�, rCO�CO�, pxCO�CO� and pyCO�CO�
orbitals were optimized locally in the CO fragment. The

two ZrAH bond orbitals also were optimized as two-
atom bonds in all calculations. The possible delocaliza-
tion e�ects, examined here, are through r-donating and
p-backdonating orbitals. These orbitals were localized
among the Zr, C and O atoms. The results are summa-
rized in Table 11. Although the e�ect of restricting the
localization of the rZrÿCO to the Zr and C atoms is very
small (0.08 kcal/mol), this restriction on the pZrÿCO has a
larger e�ect (2.68 kcal/mol). However, the treatment of
delocalization seems to be able to compensate for the
localization restriction. Since the number of variables
necessary to optimize a ``delocalized'' pZrÿCO orbital is
relatively small, a three-atom bond can be used to more
accurately describe the p-backdonation e�ects. Contour
plots of the rZrÿCO and pZrÿCO, delocalized over Zr, C
and Zr, C, O respectively, are given in Figs. 4 and 5. In
this test case, the HF/ELMO(JC) energy di�erence is less
than 0.5 kcal/mol.

Table 9. Correspondence guess orbital small system

System Orbitala

CH4 rC3H1, rC3H2, rC3H3

H2C@CH2 rC2H4, rC1C2, pC1C2

H2CO rC4H5, nbsO, nbpO, rC4O, pC4O
H2C@CHCl nbsCl, nbpCl, rC1Cl, pC1Cl
CH3CHO rC2C4

CH3CH@CH2 rC1C3

a The atom numbering is given in Fig. 6

Fig. 3. Optimized HF geometry of H2ZrCO. All bond distances in
a.u. and angles in degrees. The equilibrium bond distance of CO
(optimized at the HF level in the triple-f basis set [17] is given in
parentheses)

Table 10. Total ELMO, ELMO(JC) and HF energiesa for
CH3ClC@CHCHO

Total energy (a.u.)

ELMO (1st iteration = HF
energies with guess orbitals)

)688.69965 (60.9)

ELMO (convergence) )688.74720 (31.0)
ELMO (JC) )688.79448 (1.40)
HF )688.79668 (0.00)
a Relative energies compared to HF are given in parentheses (kcal/
mol)

Table 11. Total ELMO, ELMO(JC) and HF energies for H2ZrCO
with di�erent localization patterns

ELMO (a.u.) ELMO (JC) (a.u.)

r (Zr, C, O); p (Zr, C, O) )160.15043 (3.9) )160.15632 (0.2)
r (Zr, C); p (Zr, C, O) )160.15031 (4.0) )160.15632 (0.2)
r (Zr, C, O); p (Zr, C) )160.14617 (6.6) )160.15611 (0.3)
a Relative energies compared to HF are given in parentheses (kcal/
mol). EHF = )160.15664 a.u.

106



4 Conclusion

The ELMO method encompasses several important
features of MO optimization codes such as low-order
scaling, e�cient convergence and ability to take full
advantage of a high quality set of initial orbitals. For this
method, an e�cient variable metric or quasi Newton-
Raphson algorithm has been derived in a localized non-
orthogonal formalism. This algorithm requires a good

approximate Hessian matrix to reach quadratic conver-
gence and the ELMO method is based on an e�cient
derivation of an approximate Hessian matrix through
the use of the Fock matrix only. The data structure of the
localized orbitals allows the Hessian to be set up in
diagonal-blocked form, ignoring the contribution of the
orbital coupling elements which are introduced during
the course of the iterations by a DFP or BFGS updating
technique. An orbital optimization iteration in ELMO
consists of building one Fock matrix as in standard HF
methods and updated orbitals are calculated with
approximately n operations (n2 operations are required
to evaluate the gradient of the energy versus the
variables). The method is free from any large n3

processes such as Fock matrix diagonalization, overlap
matrix diagonalization, matrix multiplication or orbital
orthogonalization. The delocalization e�ects (contribut-
ing to an energy stabilization of 10 to 30 kcal/mol) are
introduced in ELMO(JC) by a treatment using the Fock
matrix built in the last iteration. The delocalized orbitals
allow calculation of the total energy while requiring only
a small number of additional two-electron integrals.

The Fock matrix computation can take full advan-
tage of the currently developed fast multipole methods
[7] and thus reach linear scaling. Since the Fock matrix
computation can also be obtained e�ciently over several
hundreds of processors [34], the ELMO method can
be fully optimized for parallel architectures using the
N-separability of the Newton-Raphson procedure. The
treatment of the delocalization e�ects in the ELMO(JC)
can also use the e�ciency of the inherent parallelism of
the Jacobi algorithm. Research with these perspectives is
currently under development and will be presented in the
near future.

Appendix

Intrinsic zero eigenvalues of the Hessian matrix

The energy formula (Eq. 11) is exact using both normalized or
unnormalized non-orthogonal orbitals. Thus a step vector dX pro-
portional to X would only change the norm of the orbitals without
any e�ect on the total energy. Since this artifact is not explicitly
taken into account in the energy minimization process, each block
of the exact diagonal-blocked Hessian matrix has an intrinsic ei-
genvalue equal to zero corresponding to an eigenvector equal to the
molecular orbital development. However, it can be demonstrated
that this vector is orthogonal to the gradient vector (see demon-
stration below). A block of the exact diagonal-blocked Hessian
matrix may also have other intrinsic zero eigenvalues corresponding
to the fact that the energy is invariant to the mixing of certain

Fig. 4. Contour plot of the rZrC two-atom bond of H2ZrCO in the
plane of the molecule

Fig. 5. Contour plot of the pZrCO orbital of H2ZrCO in a plane
orthogonal to the molecule containing the three atoms

Fig. 6. Atom numbering in CH3ClC-CHCHO

107



molecular orbitals. If the mixing between several orbitals is obtained
while maintaining the localization pattern, the blocked Hessian
matrix has some additional zero eigenvalues. It can be shown that
the corresponding eigenvectors are orthogonal to the gradient vec-
tor. This situation occurs when core or non-bonding orbitals (de-
veloped only on the CGTOs of one atom) are present. This problem
can be encountered in a more general way if the localization of
orbitals is extended to a larger number of atoms and reaches its
maximum amplitude upon using fully delocalized orbitals.

Theorem: The gradient vector corresponding to a given orbital k is
orthogonal to any occupied molecular orbital 1.

To demonstrate the theorem, the following quantity is evaluated:X
a

dE
dCak

Cal �
X
p;q

Fpq

X
a

dqpq

dCak
Cal �A1�

X
a

dqpq

dCak
Cal �

X
a

da
pAkq � da

qAkp ÿ AkpA�aq ÿ AkqA�ap

� �
Cal

� AkqCpl � AkpCql ÿ Akp

X
a

A�aqCal

ÿ Akq

X
a

A�apCal

� AkqCpl � AkpCql ÿ Akp�tA�C�ql

ÿ Akq�tA�C�pl : �A2�
The following expressions allow the calculation of �tA�C�pl:

A� � tBA

B� � tBSÿ1

A � Sÿ1tC
B � tCr

S � tCrC ;

�A3�

�tA�C�pl � �tABC�pl � �CSÿ1tCrC�pl

� �CSÿ1S�pl � Cpl :
�A4�

Thus:X
a

dqpq

dCak
Cal � 0; 8k; l

X
a

dE
dCak

Cal �
X
p;q

Fpq0 � 0 : �A5�

Theorem: The block corresponding to a given orbital k in the
approximate blocked Hessian matrix has some zero eigenvalues
associated with eigenvectors corresponding to an occupied molec-
ular orbital l.

To demonstrate the theorem, the following quantity is evaluated:

�HkC�al �
X

b

d2E
dCakdCbk

Cbl �
X
p;q

Fpq

X
b

d2qpq

dCakdCbk

 !�
Cbl

X
b

d2qpq

dCakdCbk

 !�
Cbl

� Sÿ1kk da
pCql � da

qCpl ÿ da
p

X
b

A�bqCbl ÿ da
q

X
b

A�bpCbl

 !

� Sÿ1kk

 
ÿ A�aqCpl ÿ A�aqCql � A�aq

X
b

A�bpCbl

� A�ap

X
b

A�bqCbl

!
� 2AkpAkq

 XN

i;j�1
BiaSÿ1ij

X
b

BjbCbl

ÿ
X

b

rabCbl

!
: �A6�

Using Eq. (A4), the following expression can be simpli®ed to:X
b

d2qpq

dCakdCbk

 !�
Cbl � 2AkpAkq �tBSÿ1BC�al ÿ �rC�al

� �
: �A7�

Since �tBSÿ1BC�al � �rCSÿ1tCrC�al � �rCSÿ1S�al � �rC�al, the
Eq. (A7) is equal to 0 for all couples �a; l�, i.e., for all occupied
molecular orbitals. Thus, any molecular orbital l that has a local-
ization pattern included in the localization pattern of orbital k is
associated with a zero eigenvalue of the approximate block Hessian
relative to orbital k.

N.B.X
b

d2qpq

dCakdCbk
Cbl �

X
b

d2qpq

dCakdCbk

 !�
Cbl

� ÿda
pAkq ÿ da

qAkp � AkpA�aq � AkqA�ap

� �X
b

B�bkCbl

� B�ak

 
ÿ AkqCpl ÿ AkpCql � Akp

X
b

A�bqCbl

� Akq

X
b

A�bpCbl

!
: �A8�

Using Eq. (A4), the previous equation can be simpli®ed:X
b

d2qpq

dCakdCbk
Cbl

� ÿda
pAkq ÿ da

qAkp � AkpA�aq � AkqA�ap

� �
dl

k : �A9�
SinceX

b

B�bkCbl � �tB�C�kl � �Sÿ1BC�kl

� �Sÿ1tCrC�kl � �Sÿ1S�pl � dl
k : �A10�

Thus,
P
p;q

Fpq
P

b

d2qpq

dCak dCbk
Cbk � ÿ dE

dCak
vanishes only at the conver-

gence.
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